Exam Quantum Physics II

Thursday, November 2, 2006, 9:00-12:00.

Before you start, read the following:

- There are 4 problems with a total of 50 points.
- Write your name and student number on every sheet of paper.
- Write the solution of each problem on a separate sheet of paper.
- Illegible writing will be graded as incorrect.
- Good luck!

Problem 1 (45 minutes; 15 points in total)

Answer the following questions, brief and to the point:

- 2 pnts (a) Prove that $[J^2, S_z] = 2i\hbar(\vec{S} \times \vec{L})_z$ where $\vec{J} = \vec{L} + \vec{S}$.
- 2 pnts (b) Give the possible wave functions of two free electrons, taking into account the Pauli principle.
- 2 pnts (c) Write down the Hamiltonian of the helium atom. What is the ground-state energy, in formula and in eV, when the interaction between the electrons is neglected?
- 2 pnts (d) Formulate the spin-statistics theorem. Give two examples of a boson, and three examples of a fermion.
- 2 pnts (e) Describe the principle of an NMR experiment and how it can measure the g-factor of the proton.
- 2 pnts (f) A carbon atom has two p electrons in the outer shell. Which of the possible terms ${}^{2S+1}L_J$ are allowed by the exclusion principle?
- 2 pnts (g) Consider (time-independent, nondegenerate) perturbation theory for a Hamiltonian of the form $H = H_0 + \lambda H'$. Give the formula for the first-order correction to the energy E_0 , and explain in words what it says.
- 1 pnt (h) Where is Schrödinger's cat?

Problem 2 (45 minutes; 15 points in total)

The Lyman series in hydrogen is the series of spectral lines that correspond to transitions $n' \to n$ to the ground state n = 1.

- 4 pnts (a) Calculate the energy in eV, and the wavelength in nm, of the Lyman- α line $(n'=2 \rightarrow n=1)$ and of the limit of the series $n' \rightarrow \infty$. Use $\alpha=1/137$ and $\hbar c=200$ eV·nm. In which part of the electromagnetic spectrum do these lines lie?
- 2 pnts (b) Calculate the relative difference of the wavelengths of the Lyman- α line for deuterium and for hydrogen.

Consider next the fine-structure of the hydrogen spectrum. The energies are given by

$$E_{n\ell j} = -|E_n| \left[1 + \left(\frac{Z\alpha}{n} \right)^2 \left(\frac{n}{j + \frac{1}{2}} - \frac{3}{4} \right) \right],$$

where E_n are the Bohr energies, Z=1, and $j=\ell\pm 1/2$.

- 3 pnts (c) Discuss (no derivations!) which two physical effects are responsible for the fine-structure.
- 3 pnts (d) Calculate the fine-splitting of the n=1 and n=2 Bohr levels by giving the shifts with respect to the corresponding Bohr energies in cm⁻¹. Use that 1 Rydberg corresponds to 1.1×10^5 cm⁻¹.
- 3 pnts (e) Give the dipole selection rules for fine-structure levels (no derivation!). Out of how many, and which, lines does the Lyman- α line consist? Make a schematic drawing of the levels involved and indicate the transitions.

Problem 3 (35 minutes; 10 points in total)

An electron is at rest at the origin in an eigenstate α_x of S_x , with eigenvalue $+\hbar/2$. At time t=0 it is placed in a magnetic field pointing in the z-direction, $\vec{B}=(0,0,B)$, in which it is allowed to precess for a time T.

- 2 pnts (a) Give the time-dependent Schrödinger equation for the spin vector $\xi(t)$. Write the Hamiltonian $H = -\vec{\mu} \cdot \vec{B}$ explicitly as a 2×2 matrix.
- 4 pnts (b) Solve the equation, taking into account the appropriate boundary condition at t=0. Use the notation of the cyclotron frequency: $\Omega=|e|B/mc$. What is $\xi(T)$?

At this time t = T the magnetic field is very rapidly rotated in the y-direction, so that now its components are (0, B, 0). After another time interval T a measurement of S_x is carried out.

4 pnts (c) Give in Dirac notation the probability that the value $+\hbar/2$ will be found, and calculate it.

Problem 4 (25 minutes; 10 points in total)

- pnts (a) Write during 10 minutes (max. about 150 words) about the question: What is a photon?
- pnts (b) Write during 10 minutes (max. about 150 words) about the question: What is spin?